Guidance on the Safe Implementation of Unconventional Arterial Designs

Draft Final Report

Prepared for the:
Southeastern Transportation Center
Dr. Stephen H. Richards, Center Director
University of Tennessee at Knoxville
FY 00-01 Seed Grant Program

Written by:
Cipriana D. Thompson, Research Assistant
Joseph E. Hummer, Associate Professor
North Carolina State University
Department of Civil Engineering
Raleigh, NC 27695-7908

September 17th, 2001
ABSTRACT

Unconventional arterial designs like median u-turns, superstreets, jughandles, continuous flow intersections, and bowties have the potential to significantly reduce delay compared to conventional arterial designs of similar size. One of the reasons designers cite for not using the unconventional designs, however, is concern that drivers will not understand how to negotiate their way through the intersections, particularly when they are new. The purpose of this project was to explore this concern and highlight ways in which it could be alleviated. States where the unconventional designs are already in place were contacted regarding their signing plans and public information procedures. Many of the signing plans are a good starting, if not ending, point for engineers interested in implementing these designs. Public information is another important aspect of implementing the unconventional designs. Information regarding the designs can be distributed to the driving public in a variety of ways, including, but not limited to, pamphlets, flyers and newspaper articles. The results of this effort indicate that the five unconventional arterial designs can be implemented safely through the use of signing plans and efficient public information campaigns.
ACKNOWLEDGEMENTS

The authors acknowledge the North Carolina Department of Transportation (NCDOT) for assistance with this research. Specifically, Mike Reese, Gary Roberts, and John Davenport provided valuable information.

The authors gratefully acknowledge assistance of the Departments of Transportation in Michigan and New Jersey, the Maryland State Highway Association, and others. In particular, we thank Timothy Szwedo, Angela Smith, Bob Lariviere, and Francisco Mier.

The authors also acknowledge the Southeastern Transportation Center (STC) for supporting this research, and North Carolina State University for providing matching support for this research.

The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the views and opinions of the STC, the NCDOT, the Michigan DOT, the New Jersey DOT, or North Carolina State University.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2. DESIGNS</td>
<td>3</td>
</tr>
<tr>
<td>Descriptions and Signing Plans</td>
<td>3</td>
</tr>
<tr>
<td>Median U-Turn</td>
<td>3</td>
</tr>
<tr>
<td>Superstreet</td>
<td>4</td>
</tr>
<tr>
<td>Jughandle</td>
<td>4</td>
</tr>
<tr>
<td>Continuous Flow Intersection</td>
<td>5</td>
</tr>
<tr>
<td>Bowtie</td>
<td>6</td>
</tr>
<tr>
<td>Movement Evaluation</td>
<td>7</td>
</tr>
<tr>
<td>Cost Data</td>
<td>10</td>
</tr>
<tr>
<td>3. PUBLIC INFORMATION AND EDUCATION</td>
<td>12</td>
</tr>
<tr>
<td>Driver Understanding</td>
<td>12</td>
</tr>
<tr>
<td>Public Education</td>
<td>12</td>
</tr>
<tr>
<td>Texas Vital Signs Campaign</td>
<td>13</td>
</tr>
<tr>
<td>Public Information in North Carolina</td>
<td>14</td>
</tr>
<tr>
<td>4. ENFORCEMENT</td>
<td>15</td>
</tr>
<tr>
<td>5. CONCLUSIONS AND RECOMMENDITIONS</td>
<td>16</td>
</tr>
<tr>
<td>6. REFERENCES</td>
<td>18</td>
</tr>
<tr>
<td>APPENDICES</td>
<td></td>
</tr>
<tr>
<td>A. Signing Plans and Pictures</td>
<td>19</td>
</tr>
<tr>
<td>B. MUTCD Standard and Cost Data for Signing Plans</td>
<td>40</td>
</tr>
<tr>
<td>C. Detailed Expectancy Checklists</td>
<td>43</td>
</tr>
<tr>
<td>D. Public Information Brochures</td>
<td>56</td>
</tr>
<tr>
<td>E. Texas Vital Signs Campaign Sign</td>
<td>60</td>
</tr>
<tr>
<td>F. NCDOT Public Information Brochures</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2-1.</td>
<td>Median U-Turn</td>
<td>3</td>
</tr>
<tr>
<td>Figure 2-2.</td>
<td>Superstreet</td>
<td>4</td>
</tr>
<tr>
<td>Figure 2-3.</td>
<td>Jughandle</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2-4.</td>
<td>Continuous Flow Intersection</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2-5.</td>
<td>Bowtie</td>
<td>7</td>
</tr>
<tr>
<td>Figure 3-1.</td>
<td>Know Your Vital Signs Logo</td>
<td>13</td>
</tr>
<tr>
<td>Figure A-1.1</td>
<td>Michigan DOT Median U-Turn</td>
<td>21</td>
</tr>
<tr>
<td>Figure A-2.1</td>
<td>Superstreet Intersection in Kent County, MD</td>
<td>23</td>
</tr>
<tr>
<td>Figure A-2.2</td>
<td>Superstreet Intersection</td>
<td>23</td>
</tr>
<tr>
<td>Figure A-2.3</td>
<td>Past the Intersection</td>
<td>24</td>
</tr>
<tr>
<td>Figure A-2.4</td>
<td>Past the Intersection</td>
<td>24</td>
</tr>
<tr>
<td>Figure A-2.5</td>
<td>Past the Intersection</td>
<td>25</td>
</tr>
<tr>
<td>Figure A-2.6</td>
<td>Major Street Approach</td>
<td>25</td>
</tr>
<tr>
<td>Figure A-2.7</td>
<td>Minor Street Approach</td>
<td>26</td>
</tr>
<tr>
<td>Figure A-2.8</td>
<td>Sign on Minor Street Approach</td>
<td>26</td>
</tr>
<tr>
<td>Figure A-3.1</td>
<td>Jughandle Signing Plan 1</td>
<td>28</td>
</tr>
<tr>
<td>Figure A-3.2</td>
<td>Jughandle Signing Plan 2</td>
<td>29</td>
</tr>
<tr>
<td>Figure A-3.3</td>
<td>Jughandle Signing Plan 3</td>
<td>30</td>
</tr>
<tr>
<td>Figure A-3.4</td>
<td>Jughandle Signing Plan 4</td>
<td>31</td>
</tr>
<tr>
<td>Figure A-4.1</td>
<td>MD 210 & MD 228, Prince Georges County, MD</td>
<td>33</td>
</tr>
<tr>
<td>Figure A-4.2</td>
<td>MD 210 Southbound – Approaching Intersection</td>
<td>33</td>
</tr>
<tr>
<td>Figure A-4.3</td>
<td>MD 210 Southbound – Approaching Intersection</td>
<td>34</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Cont’d)

Figure A-4.4 MD 210 Southbound – At Intersection 34
Figure A-4.5 MD 210 Northbound – Approaching Intersection 35
Figure A-4.6 MD 228 Westbound – View of Intersection 35
Figure A-4.7 MD 228 Westbound – View of Intersection 36
Figure A-4.8 MD 228 Westbound 36
Figure A-4.9 MD 228 Westbound 37
Figure A-4.10 MD 228 Westbound 37
Figure A-5.1 Bowtie Signing Plan 39
Figure C-1 Blank Expectancy Checklist 44
Figure C-2 Median U-Turn Checklist 46
Figure C-3 Superstreet Checklist 48
Figure C-4 Jughandle Checklist 50
Figure C-5 Continuous Flow Intersection Checklist 52
Figure C-6 Bowtie Checklist 54
Figure D-1 Protective/Permissive Signal Brochure 57
Figure D-2 Left-Turn Traffic Signals Brochure 58
Figure D-3 Left-Turn Phasing Warrants Brochure 59
Figure E-1 Texas Vital Signs Campaign Sign 61
Figure F-1 NCDOT News Release 63
Figure F-2 Community Meeting Flyer 64
Figure F-3 Project/Construction Information Flyer 65
Figure F-4 Community Meeting Door Hanger 66
<table>
<thead>
<tr>
<th>Figure F-5</th>
<th>Road Widening Information Flyer</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure F-6</td>
<td>Resident and Business Information Flyer</td>
<td>68</td>
</tr>
<tr>
<td>Figure F-7</td>
<td>Construction Information Flyer</td>
<td>69</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Table 2-1.</td>
<td>Unnatural Vehicle Movement Matrix</td>
<td>8</td>
</tr>
<tr>
<td>Table 2-2.</td>
<td>Pedestrian Movement Matrix</td>
<td>9</td>
</tr>
<tr>
<td>Table B-1.</td>
<td>MUTCD Standard and Cost Data</td>
<td>41</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Many signalized intersections in the U.S. suffer from congestion and long queues and delays. Congestion on urban and suburban arterials is an ever-present traffic problem. The issue of congestion is so broad that no one solution will fix the problem. Therefore, it is important to mold congestion solutions to fit specific problem areas. From traffic-actuated signals to multiple left-turn lanes to parallel one-way streets, transportation engineers have tried many traditional approaches to relieving this problem. Although these approaches are sometimes successful, there is a need to explore additional options. Unconventional alternatives may provide a new way of tackling these issues.

Engineers should consider alternatives that focus on treating left-turns to and from arterials, as they are the cause of many operational problems. These “unconventional” alternatives focus on reducing delay to through vehicles, reducing conflict points at intersections, and separating the conflict points that remain (1). The unconventional alternatives that are being considered for the purpose of this project are median u-turns (left turns to and from the arterial required to use directional median crossovers), superstreets (all left turns and the cross-street through movements must use directional median crossovers), bowties (a form of median u-turn using roundabouts instead of median crossovers), continuous flow intersections (ramp to the left of the arterial upstream of the main intersection to handle traffic turning left from the arterial), and jughandles (ramps diverge from the right side of the arterial to accommodate all turns from the arterial) (2). These designs have potential for widespread implementation in the short term. Unfortunately, these alternatives, in providing a different and sometimes new approach to attacking congestion, may cause more driver confusion than conventional arterials.

With the implementation of new and unfamiliar arterial designs, there is always the concern about driver understanding. The new designs may reduce the congestion at intersections, but only if the drivers effectively navigate them. Therefore, the question arises: How should agencies communicate to the driver the correct and safe way to utilize a new arterial design?

When dealing with new traffic designs, driver expectancy is an extremely important factor. According to FHWA’s Driver Expectancy in Highway Design and Traffic Operations (3), “expectancy relates to a driver’s readiness to respond to situations, events, and information in predictable and successful ways.” Traffic operations, traffic control devices, and geometrics that are unfamiliar to or “unexpected” by drivers, violate this concept. When driver expectancy is violated, the driver may respond in a confused, frustrated, slow, or even dangerous manner. Therefore, it is important that the road user not only expects what is ahead, but understands how to make his way safely. When introducing a new traffic pattern, drivers need to be aware, ahead of time, of what is expected of them.
Transportation engineers and officials, enforcement officers, and the driving public all have a vested interest in these issues. All of these parties will need to be involved in the process of implementing the five designs for them to be successful.

This project will recommend to designers how to safely implement unconventional designs. This project report will discuss which signs are effective for particular designs (including cost data), what public relations activities are most effective in informing drivers of unusual new intersections, and what types of enforcement are needed.
2. DESIGNS

The unconventional arterial designs that are the focus of this project all basically share the same operational mode: they reroute left-turn movements.

Probably the most recognized “new” type of arterial design is the roundabout. The roundabout design operates without the use of signals. It is a circular roadway that has a continuous circulating traffic flow; drivers enter where there is an appropriate gap. Entering traffic yields to the traffic in the roundabout. Although not one of the designs being studied, the roundabout is now relatively popular. As it was a “new” design that caused drivers to adapt to a new operation, some information regarding roundabouts may be referenced. Roundabout implementation will be a good analogy for unconventional design implementation.

The roundabout has effectively eased its way into mainstream traffic operations. As most drivers have become comfortable with navigating this design, there is hope that the five unconventional designs of interest here should, in time and if widely implemented, be easily recognized as well.

2.1. Descriptions and Signing Plans

2.1.1. Median U-Turn

The median u-turn, shown in Figure 2-1, requires left-turning vehicles to and from the arterial to use directional median crossovers. Left turns are prohibited at the main intersections. Vehicles wishing to turn left from the main arterial to the minor arterial or collector must continue through the intersection, make a u-turn at the crossover and then make a right turn back at the intersection. Vehicles wishing to turn left onto the arterial must first turn right, make a u-turn at the crossover and then proceed through the intersection. The most prominent user of median u-turns in the United States, the Michigan Department of Transportation (DOT) has over 1,000 miles in service (1).

![Figure 2-1. Median U-turn](figure.png)

The typical signing plan used by the Michigan DOT consists of a series of regulatory and guide signs (Appendix A). As shown in a table in Appendix B, all of the regulatory signs used in this plan are in the Manual on Uniform Traffic Control Devices (MUTCD) (5).
This typical method of signing median u-turns has been in place for many years. This signing plan has been and remains, according to several Michigan DOT traffic engineers, an effective one.

2.1.2. Superstreet

The superstreet design, shown in Figure 2-2, is an alternative that eliminates through and left-turn movements from the minor street. These movements are rerouted to the directional crossover on the major street. The superstreet alternative was originated by Richard Kramer, a traffic engineer in Alabama. There are few full implementations of the superstreet alternative (1).

![Figure 2-2. Superstreet](image)

The research team was able to locate an implemented superstreet design in Kent County, Maryland (Appendix A). A site visit provided information on the signs and marking. The superstreet, at the intersection of US 301 and Galena Road, is unsignalized and follows the operational procedure described previously. The majority of the signs used at this particular intersection are MUTCD standard or assemblies of MUTCD standard signs. Appendix B displays pictures of some of the signs, including the more innovative ones.

After observation of this intersection, the signing plan seemed to be an effective one. There did not appear to be any driver confusion, which could have been indicated by late lane changes, erratic braking, or decreased vehicle speed on approach. However, the addition of a diagrammatic sign on the minor street approach to convey to the driver how to complete the through or left turn movement would be helpful. This signing plan seemed effective for this section of US 301, where the traffic was light to moderate. This same signing plan also would seem appropriate in a suburban area. However, if the superstreet design were located in a busier area, signalization may be necessary. If there is a higher volume on the major street, entry from the minor street may become difficult.

2.1.3. Jughandle

The jughandle design, shown in Figure 2-3, uses ramps diverging from the right side of the arterial to accommodate all turns from the arterial (2). This design eliminates all turns from the main arterial at the intersection. Approaching the intersection, the vehicles wishing to make right or left turns use the ramp on the right side. Those turning left will
take the ramp, make the left onto the cross street and then proceed through the intersection. Those turning right will simply take the ramp and continue right.

The New Jersey Department of Transportation (NJDOT) has used and continues to use jughandles on hundreds of miles of heavy-volume arterials (2).

![Figure 2-3. Jughandle](image)

The NJ DOT provided typical signing and marking plans for a variety of jughandle designs (Appendix A). There is a combination of regulatory and guide signs. Again, not all of the signs are MUTCD standard (Appendix B). Several NJDOT traffic engineers believe that their typical signing plans have been and continue to be effective. A site visit to several intersections in New Jersey provided the research team with the opportunity to drive a variety of jughandle designs. Based on the experience of a first-time jughandle driver, the method of signing proved adequate and effective.

2.1.4. Continuous Flow Intersection

The continuous flow intersection design (CFI), shown in Figure 2-4, uses a ramp to the left of the main arterial and a ramp to the right of the minor arterial or collector. Left-turning vehicles from the main street take the left side ramp to the minor street prior to reaching the intersection. Right-turning vehicles from the minor street take the right side ramp to the major street prior to entering the intersection.

This design, patented by Francisco Mier (U.S. Patent Number 5049000), was first used in the U.S. in Long Island, New York and has since been used several times in Mexico (2).
Although most of these designs have been implemented in Mexico, the research team visited a partial CFI in Prince Georges County, Maryland (Appendix A). The “continuous flow” left side ramp was located on the minor street. Located at the T-intersection of MD 210 and MD 228, there are many signs directing drivers. The signing plan used at this particular intersection incorporates many MUTCD standard signs. This signing plan also uses several overhead signs. Although more than adequately communicating directions to the driver, the overhead signs could likely be replaced with roadside signs at other intersections.

Although this signing plan is for a partial intersection, it would be effective for a full CFI as well. Whether the continuous flow portions were on the minor or major arterial, the same signing method could be used.

2.1.5. Bowtie

The bowtie, shown in Figure 2-5, is a design that accommodates all left turns on the cross street. The bowtie uses roundabouts on the cross street to accommodate left turns instead of directional crossovers across a wide median (1). Again, with left turns prohibited, the vehicles wishing to turn left will make a right turn at the intersection, enter the roundabout on the minor street, and then come back through the intersection.
The bowtie is the only design mentioned that has not already been implemented at some location. Because there is no current implementation for this design, the research team developed a signing plan. As shown in Appendix A, the signing plan essentially combines the signing plans of the roundabout (obtained from the North Carolina Department of Transportation), jughandle, and median u-turn with a few innovative additions. As the signing plans for those designs appear to be effective, the bowtie designs signing plan should be equally adequate.

2.2. Movement Evaluation

The basic issue in developing signing plans for these designs is to communicate ways in which they differ from conventional intersections from the driver’s point of view. To explore these differences, the project team developed a matrix (Table 2-1) illustrating the number of “unnatural and altered movements” required to navigate each design. An unnatural movement is a movement that requires a different course of action than a typical intersection, i.e., to make a left turn, a driver must turn right and then go straight. An altered movement is a movement that essentially requires the same course of action, but at a different location, i.e., a right turn is still permissible, but occurs before or after the intersection.

The matrix includes four conventional intersection types, the five unconventional designs of interest, and the roundabout. There are sixteen movements considered, including u-turns. The matrix shows that the roundabout contains the largest number of unnatural and altered movements. The five designs of interest fall in between the conventional intersections and the roundabout, with the jughandle containing the fewest number of unnatural movements.

A second matrix (Table 2-2) illustrates the pedestrian movements required to safely cross these designs. This is evaluated by taking into account the number of roadways crossed, the number of crossings of free-flowing roadways, and the status of the right-turn movement (free-flowing or controlled). The designs are then ranked according to lowest
Table 2-1. Unnatural Vehicle Movement Matrix

<table>
<thead>
<tr>
<th>Movement Number Code</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor Street</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Street</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Movements</th>
<th>Conventional Intersection (1)</th>
<th>Conventional Intersection (2)</th>
<th>Conventional Intersection (3)</th>
<th>Conventional Intersection (4)</th>
<th>Median U-Turn</th>
<th>Superstreet</th>
<th>CFI</th>
<th>Jughandle</th>
<th>Bowtie</th>
<th>Roundabout</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>1 2 0 0 2 2 0 0 1 2 0 0 0 2 2 0 0 14</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>2 2 0 0 2 2 0 0 2 2 0 0 0 2 2 0 0 20</td>
<td>10</td>
<td>5</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unnatural movement (2 pts) -- a movement that requires a different course of action; i.e. to make a left turn, driver must turn right and then go straight.

Altered movement (1 pt) -- a movement that essentially requires the same course of action, but at a different location; i.e. a right turn is still permissible, but occurs before or after the intersection.

"Natural" movement (0 pts)

1 -- No median and free right turn
2 -- Median and no free right turn
3 -- No median and no free right turn
4 -- Median and free right turn
Table 2-2. Pedestrian Movement Matrix

<table>
<thead>
<tr>
<th>Pedestrian Movements</th>
<th>Number of Roadways Crossed</th>
<th>Number of Free-Flowing Crossings</th>
<th>Right-turn movement Free-flowing(1), Controlled (0)</th>
<th>TOTAL</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional Intersection (1)</td>
<td>1 1 1 1 0 0 0 0 1 1 1 1</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1</td>
<td>8 5</td>
<td></td>
</tr>
<tr>
<td>Conventional Intersection (2)</td>
<td>2 1 2 1 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>2 2 2 2 2 1 1 1 1</td>
<td>10 6</td>
<td></td>
</tr>
<tr>
<td>Conventional Intersection (3)</td>
<td>1 1 1 1 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>2 2 2 2 2 1 1 1</td>
<td>12 7</td>
<td></td>
</tr>
<tr>
<td>Conventional Intersection (4)</td>
<td>2 1 2 1 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>2 2 2 2 2 1 1 1</td>
<td>16 8</td>
<td></td>
</tr>
<tr>
<td>Median U-Turn*</td>
<td>2 1 2 1 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>2 2 2 2 2 1 1 1</td>
<td>22 10</td>
<td></td>
</tr>
<tr>
<td>Superstreet*</td>
<td>3 2 3 2 2 2 2 2 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3</td>
<td>20 9</td>
<td></td>
</tr>
<tr>
<td>CFI*</td>
<td>1 1 1 1 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Jughandle*</td>
<td>3 2 3 2 1 1 1 1 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>3 3 3 3 3 3 3 3 3 3 3 3</td>
<td>16 8</td>
<td></td>
</tr>
<tr>
<td>Bowtie</td>
<td>1 1 1 1 0 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
<td>1 1 1 1 1 1 1 1</td>
<td>4 1</td>
<td></td>
</tr>
<tr>
<td>Roundabout*</td>
<td>2 2 2 2 2 2 2 2 1 1 1 1</td>
<td>1 1 1 1 1 1 1 1 1 1 1 1</td>
<td>2 2 2 2 2 2 2 2 2 2 2 2</td>
<td>20 9</td>
<td></td>
</tr>
</tbody>
</table>

Movements 17/18 and 21/22 are crossing the major street.
Movements 19/20 and 23/24 are crossing the minor street.

Assuming medians

Conventional Intersections:
1 -- No median and free right turn
2 -- Median and no free right turn
3 -- No median and no free right turn
4 -- Median and free right turn
score. One of the conventional intersections (no median and no free right turn) and the bowtie design, followed by another conventional intersection (median and no free right turn) and the median u-turn design proved to be the most “pedestrian friendly.” The roundabout and continuous flow intersection proved to be the most difficult for pedestrians to navigate.

The roundabout ranks last or close to last in both matrices. There has been an increase in the number of roundabouts being constructed in North Carolina and other states and drivers and pedestrians have gotten used to the designs very quickly. The more exposure drivers have to the unconventional designs, as with the roundabout, the more likely they are to become familiar with it.

2.3. Cost Data

The NCDOT’s Traffic Engineering and Safety Systems Branch provided the research team with cost estimates on some of the signs used with these designs. A table in Appendix B displays this cost information. For each of the five unconventional designs (including two types of jughandles), a matrix in Appendix B includes the signs, quantity used in each design, MUTCD standard information (sign number, section, type), dimensions, and costs (including sign cost, mounting cost, installation cost and a 15% mobilization fee).

From least expensive to most expensive, the designs of interest ranked as follows: median u-turn ($7800), bowtie ($12,000), jughandle ($13,000), superstreet ($105,000), and continuous flow intersection ($205,000). The reason for the large difference between the first three designs and the latter two is the use of overhead signs. The superstreet has two overhead signs, one on each of the minor street approaches. The continuous flow intersection signing plan has three overhead signs, all on the southbound approach.

Cost reduction is possible with the superstreet and continuous flow designs. The two overhead signs used in the superstreet intersection convey to the drivers that they must stop ahead and can only turn right at the intersection. Because of the location of the signs and the other signs surrounding them, it appears that the overhead signs are the clearest way to communicate to the drivers what they are to do. However, because the minor approach (at this particular intersection) is one lane in each direction, the message on the overhead sign can be communicated with a roadside sign. We recommend, at this early stage in the development of the superstreet design, ground-mounted guide signs on the minor street if there is just one lane and overhead signs if there are multiple lanes. If the signs were ground-mounted, the total cost of the signing plan would be $12,000.

In the continuous flow intersection design, the use of the three overhead signs does not seem to be absolutely necessary. The overhead signs are guide signs used to indicate which lanes the driver needs to be in to go to a particular destination. The same message could be communicated as clearly without the use of overhead masts, particularly since the left turn is only an altered movement and the through and right turn are unchanged. The destination signs could be mounted on the roadside with directional arrows or words...
to communicate the same message as the overhead signs. If the signs were mounted in the ground, the total cost of the signing plan would be reduced to $23,000.

Pavement markings, although not the focus of discussion in this report, may be necessary in some of the unconventional design plans. The pavement markings (lines) are priced per linear foot. The average cost in North Carolina is approximately $0.35 per linear foot for 4-inch lines and $75 for symbols (i.e. arrows). The addition of pavement markings to any of the plans could result in an increase in cost of several thousand dollars.

Three of the five unconventional designs (median u-turn, superstreet, and continuous flow) also may require additional signals at the crossover locations depending upon traffic volumes and other variables. Extra signals are approximately $60,000 each plus the cost of interconnection.
3. PUBLIC INFORMATION AND EDUCATION

3.1. Driver Understanding

One of the most important factors in driver understanding relates to driver expectancy. A new sign or intersection operation may not be necessarily hard to understand when looking at a plan view, but by nature of its appearance, the driver can be surprised or even confused.

To provide signs for an intersection, it is important to know what would make a signing plan effective or ineffective based on driver expectancy. According to the FHWA’s *Driver Expectancy in Highway Design and Traffic Operations*, the basic driving task consists of three performance levels – control, guidance, and navigation. Each level involves different acts and information sources. Control refers to the driver’s interaction with the vehicle itself. The driver receives information based on the response of the vehicle to his/her actions. Guidance has to do with the driver’s maintenance of a safe speed and path. The driver receives information from the highway (geometry, hazards, etc.), traffic (speed, gaps, etc.), and traffic control devices (signs and marking). Navigation deals with the activities involved in planning and executing a trip from origin to destination. Information here comes from maps, signs, and verbal directions.

There are two types of driver expectancies: a priori and ad hoc (3). A priori expectancies are long term and are based on past experience or learned actions. Ad hoc expectancies are more short term and are based on site-specific practices and situations encountered while driving. So, it is necessary, when implementing new designs, to initially tackle the ad hoc expectancy requirement and eventually progress to a priori expectancy. As these designs become more widely used, drivers will understand their operation and know what to expect when they approach them.

In the FHWA’s *Driver Expectancy* document, a useful “Detailed Expectancy Checklist” is provided (Appendix C). The checklist reviews a variety of items including land use, road type and surface, sight distances, traffic patterns, signals, markings, signs, and missing information. The research team completed a checklist for each of the five designs, based on drives through four of the five designs. The completed checklists, shown in Appendix C, emphasized the unusual traffic patterns and any signs that were surprising or confusing to the driver. The use of this Expectancy Checklist proved helpful when evaluating the signing plans of the various designs.

3.2. Public Education

With regards to public information, for those states, such as Michigan and New Jersey, that began implementing one or more of these alternatives many years ago, no one can clearly recall what information was initially given to drivers, if any.

There is a variety of ways to educate the public on new traffic patterns and operations. A few of the main ways are informational pamphlets/brochures, press releases and driver
educational classes or programs. Informational pamphlets/brochures allow drivers to have something tangible to refer to at their leisure. Several brochures are shown in Appendix D (7). Press releases get the media involved and therefore increase the reach of the information. Educational programs provide hands-on instruction to particular groups of the driving population, such as elderly or young (new) drivers. The dissemination of pertinent information to drivers can be facilitated through the use of already accessible resources, including driver’s license offices, driving schools, motor vehicle organizations (i.e. AAA), trucking associations, and state welcome centers.

3.2.1. Texas Vital Signs Campaign

An example of a successful public traffic control device information campaign is the “Vital Signs” campaign conducted by the Texas Department of Transportation (TXDOT) and the Texas Transportation Institute. The two organizations partnered to put together educational programs and a driver information campaign. In terms of educational programs, the partnership focused on revising descriptions in the Texas Drivers Handbook, revising the educational curriculum for driver education and driver safety courses to emphasize selected traffic control devices, and developing driver outreach materials (8).

With regards to the driver information campaign, the partnership produced brochures/posters, a public service announcement, a press conference, an instructional video on traffic control devices, and a slide presentation on traffic control devices. As the team did not have funding for advertising, the initial messages of the campaign were communicated to the extent that that media would carry them free of charge, through televised public service announcements and print media (8). The campaign was driven by their “Know Your Vital Signs” theme, as Figure 3-1 shows.

![Figure 3-1. Know Your Vital Signs Logo](image)

The team produced a brochure encouraging drivers to learn, understand, and follow the traffic signs. These brochures were disseminated to an enormous amount of drivers through driver education teachers, student councils, safety program participants, TxDOT public information officers, traveler centers, driver license renewal stations, and civic groups. The brochure and poster (Appendix E), focused on colors and shapes. A second brochure was produced focusing on traffic light configurations, pavement markings, and seven categories of signs.
A public service announcement was produced for television. The announcement encouraged the audience to be familiar with the traffic signs. A press conference was used to “launch” the whole campaign. The news media was provided with the first campaign brochure/poster, the public service announcement, and a summary of the research report (8). Overall, this campaign proved to be successful. According to the report, the campaign was well received by the participating agencies and the general public. The campaign received significant coverage in both the popular media and technical publications. The media’s involvement helped to reach many drivers. The clever marketing plan aided in the success.

3.3. Public Information in North Carolina

The North Carolina Department of Transportation’s Construction Unit has a public information program called IMPACT (Information Management, Public Affairs, Construction and Traffic Control). The goals of this program are to promote safety in the work zone, inform the public of impacts from construction and provide excellent customer service. This program, or programs like it, could feasibly be the best way to reach the public regarding the five unconventional designs discussed in this report.

The NCDOT’s Construction Unit, in conjunction with the Traffic Control Section, the Highway Divisions and the Public Information Office, develops and distributes a wide range of brochures, fliers, press releases, etc. Appendix F displays a few of these examples. The straightforward explanations and diagrams seem to be an effective communication tool.

In addition to this effort, the newspapers typically will contain articles about new traffic patterns, designs or construction. Speaking with traffic columnists at the *News & Observer* and *The Charlotte Observer*, traffic issues are highlighted based on their perceived importance to the driving public. The press releases that NCDOT distributes also bring attention to a variety of new traffic patterns and issues. An estimated 95% of press releases issued by the NCDOT result in stories in a newspaper. As visible as a new arterial is, the chance of a story based on a press release about such a design is excellent. The columnists also address traffic issues based on reader requests.
4. ENFORCEMENT

With respect to enforcement at these unconventional intersections, several traffic engineers from Michigan, New Jersey and North Carolina agree that it is relatively non-existent in the sense of “formal” enforcement. The intersections are, to all intents and purposes, self-enforcing. A driver attempting to make prohibited left turns through one of these intersections will likely encounter the wrath (i.e. honking of horns) of other drivers because he or she will undoubtedly begin to cause a queue for the through movement.

Although the enforcement may theoretically come from other drivers, this is not necessarily a foolproof tactic. For example, in the 1970’s there was a jughandle implemented on US 70 in eastern North Carolina. One of the reasons it failed was, with a low volume of traffic, the drivers found it easier to just continue making the left turn at the intersection. Other vehicles were not a strong enough incentive to keep the drivers from making that turn. Therefore, it is wise for a formal enforcement presence to be on site for at least the first few days after the designs go into operation. Enforcement during the AM and PM peak hours would likely be adequate. An increased presence of police officers in the area could help discourage any illegal traffic movements at the intersection.
5. CONCLUSIONS AND RECOMMENDATIONS

Congestion is an ever-present traffic problem on urban and suburban arterials. The conventional solutions to congestion only work so well. Unconventional alternatives provide more ways of addressing the congestion problem. The unconventional alternatives discussed in this report focused on treating left-turns to and from arterials, as they are the cause of many operational problems.

The unconventional alternatives that were considered for this project, because of their potential for widespread implementation in the short term, were the median u-turn, superstreet, jughandle, continuous flow intersection, and bowtie. Because these are different and sometimes new arterial designs, driver confusion is a concern. This report discussed signing plans, enforcement, and public information useful for the implementation of the five designs of interest.

The unnatural vehicle movement matrix illustrated the unnatural and altered movements required to navigate the unconventional designs. In comparison with the number of changed movements needed for the roundabout, the five designs allowed more natural movements. Most of the designs, although requiring some unnatural movements, are signed in a manner that can help the drivers successfully navigate them.

The pedestrian movement matrix illustrated how well the unconventional designs, as well as conventional intersections, accommodate pedestrians. The designs were evaluated by the number of roadways crossed, the number of free-flow crossings, and whether the right-turn movement is free-flowing or controlled. The bowtie and one conventional intersection (with no median and no free right turn) ranked best, followed by the median u-turn and another conventional intersection (with median and no free right turn). The continuous flow intersection ranked last, proving the most difficult for a pedestrian to safely cross.

As shown throughout the report, it is not necessary for traffic engineers to start from the beginning when it comes to signing these designs. The signing systems in use by various states thus far appear effective. Most of the previously mentioned plans would be suitable for use by states wishing to implement these unconventional arterial designs. The signing recommendation for the median u-turn and jughandle designs would be what the states of Michigan and New Jersey, respectively, already have in place. The recommended signing plan for the superstreet is similar to the plan that is in use at the US 301 and Galena Road intersection in Kent County, MD. An addition of a diagrammatic sign on the minor street approach could help drivers better understand how they need to navigate the upcoming intersection. Also, the use of the overhead signs on the minor street approaches (indicating that only right turns are allowed at the intersection) may not be needed. For the continuous flow intersection, the plan used at the MD 210 and MD 228 intersection is recommended with the change of the overhead signs to roadside signs. The bowtie design signing plan illustrated in Appendix B is recommended. Without overhead signs, all plans are in the range of $4000 to $23,000.
An effective public information campaign will enhance a good signing plan. We recommend, upon opening an unconventional design new to an area, that the highway agency use informational brochures such as the ones put out by the NCDOT Impact Team. The brochures should contain basic information about the design and the procedures needed to navigate the design. These brochures should be distributed to driver’s license offices, trucking associations, state welcome centers, and driver service organizations (i.e. AAA). Press releases should be used and should result in stories in the local newspaper that could also help inform drivers. Additional enforcement may also be needed upon opening an unconventional design.
6. REFERENCES

APPENDIX A

SIGNING PLANS AND PICTURES
A.1. MEDIAN U-TURN
Figure A.1.1 Michigan DOT Median U-Turn Signing Plan (Michigan DOT)
A.2. SUPERSTREET
Figure A.2.1. Superstreet Intersection in Kent County, MD
(Photos by Cipriana D. Thompson)

Figure A.2.2. Superstreet Intersection
Figure A.2.3. Past the Intersection

Figure A.2.4. Past the Intersection
Figure A.2.5. Past the Intersection

Figure A.2.6. Major Street Approach
Figure A.2.7. Minor Street Approach

Figure A.2.8. Sign on Minor Street Approach
A.3. JUGHANDLE
Figure A.3.1. Jughandle Signing Plan 1 (New Jersey DOT)
Figure A.3.2. Jughandle Signing Plan 2 (New Jersey DOT)
Figure A.3.3. Jughandle Signing Plan 3 (New Jersey DOT)
Figure A.3.4. Jughandle Signing Plan 4 (New Jersey DOT)
A.4. CONTINUOUS FLOW INTERSECTION
Figure A.4.1. MD 210 & MD 228, Prince Georges County, MD
(Photos by Cipriana D. Thompson)

Figure A.4.2. MD 210 Southbound – Approaching Intersection
Figure A.4.3. MD 210 Southbound – Approaching Intersection

Figure A.4.4. MD 210 Southbound -- At Intersection
Figure A.4.5. MD 210 Northbound – Approaching Intersection

Figure A.4.6. MD 228 Westbound -- View of Intersection
Figure A.4.7. MD 228 Westbound -- View of Intersection

Figure A.4.8. MD 228 Westbound
Figure A.4.9. MD 228 Westbound

Figure A.4.10. MD 228 Westbound
A.5. BOWTIE
Figure A.5.1 Bowtie Signing Plan (by Research Team)
APPENDIX B

MUTCD STANDARD AND COST DATA FOR SIGNING PLAN
Table B.1 MUTCD Standard and Cost Data

<table>
<thead>
<tr>
<th>Design</th>
<th>Sign (Quantity)</th>
<th>Standard?</th>
<th>Sign No.</th>
<th>Section</th>
<th>Type</th>
<th>Dimensions (in)</th>
<th>Sign</th>
<th>Mount</th>
<th>Install</th>
<th>Total*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median U-turn</td>
<td>No Left Turn (Symbol) (2)</td>
<td>Yes</td>
<td>R3-2</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$60</td>
<td>$100</td>
<td>$100</td>
<td>$598</td>
</tr>
<tr>
<td></td>
<td>Left Lane Must Turn Left (4)</td>
<td>Yes</td>
<td>R3-7</td>
<td>2B.19</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>Do Not Enter (4)</td>
<td>Yes</td>
<td>R5-1</td>
<td>2B.29</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>One Way (4)</td>
<td>Yes</td>
<td>R6-1L</td>
<td>2B.32</td>
<td>Reg</td>
<td>36x12</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>Diagrammatic Sign (4)</td>
<td>Yes</td>
<td>2E.19</td>
<td>Guide</td>
<td>72x48</td>
<td></td>
<td>$300</td>
<td>$250</td>
<td>$100</td>
<td>$2990</td>
</tr>
<tr>
<td>Superstreet</td>
<td>STOP (2)</td>
<td>Yes</td>
<td>R1-1</td>
<td>2B.04</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$690</td>
</tr>
<tr>
<td></td>
<td>YIELD (2)</td>
<td>Yes</td>
<td>R1-2</td>
<td>2B.08</td>
<td>Reg</td>
<td>36x36x36</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$690</td>
</tr>
<tr>
<td></td>
<td>Left Lane Must Turn Left (4)</td>
<td>Yes</td>
<td>R3-7</td>
<td>2B.19</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>Do Not Enter (2)</td>
<td>Yes</td>
<td>R5-1</td>
<td>2B.29</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>One Way (4)</td>
<td>Yes</td>
<td>R6-1R</td>
<td>2B.32</td>
<td>Reg</td>
<td>36x12</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>Right Turn Only (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>24x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$690</td>
</tr>
<tr>
<td></td>
<td>Stop Ahead (2)</td>
<td>Yes</td>
<td>W3-1</td>
<td>2C.15</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$690</td>
</tr>
<tr>
<td></td>
<td>U-Turn (w/ diag. Arrow) (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>24x30</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$690</td>
</tr>
<tr>
<td></td>
<td>US Route Marker (4)</td>
<td>Yes</td>
<td>M1-4</td>
<td>2D.10/11</td>
<td>Guide</td>
<td>30x24</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
<td>$1380</td>
</tr>
<tr>
<td></td>
<td>To Marker (2)</td>
<td>Yes</td>
<td>M4-5</td>
<td>2D.21</td>
<td>Guide</td>
<td>24x12</td>
<td>$80</td>
<td>$100</td>
<td>$100</td>
<td>$644</td>
</tr>
<tr>
<td></td>
<td>Advance Turn Arrow (4)</td>
<td>Yes</td>
<td>M5-1R</td>
<td>2D.25</td>
<td>Guide</td>
<td>21x15</td>
<td>$60</td>
<td>$100</td>
<td>$100</td>
<td>$1,196</td>
</tr>
<tr>
<td></td>
<td>Exit Direction Sign (2)</td>
<td>Yes</td>
<td>E6-2a</td>
<td>2E.11</td>
<td>Guide</td>
<td>Variable</td>
<td>$300</td>
<td>$250</td>
<td>$100</td>
<td>$1,495</td>
</tr>
<tr>
<td></td>
<td>Right Only at 301 & Stop Ahead* (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>60x36</td>
<td>$180</td>
<td>$80</td>
<td>$100</td>
<td>$828</td>
</tr>
</tbody>
</table>

*Does not include flashing beacon

Jughandle 1 (Reverse)	All Turns From Right Lane (2)	No	n/a	n/a	n/a	60x36	$180	$80	$100	$828
	U And Left Turn 1 (4)	No	n/a	n/a	n/a	60x24	$120	$190	$100	$1,886
	No Turns (6)	Yes	R3-3	2B.17	Reg	24x24	$80	$90	$100	$1,863
	Keep Right (4)	Yes	R4-7A	2B.28	Reg	24x30	$100	$100	$100	$1,380
	One Way (4)	Yes	R6-1L	2B.32	Reg	36x12	$100	$100	$100	$1,380
	Do Not Enter (2)	Yes	R5-1	2B.29	Reg	30x30	$100	$100	$100	$690
	U And Left Turn 2 (2)	No	n/a	n/a	n/a	60x24	$120	$190	$100	$943
	Destination Sign/Keep Right (2)	No	n/a	n/a	n/a	Variable	$120	$190	$100	$943
	Destination Sign (2)	Yes	D1-2	2D-34	Guide	Variable	$120	$190	$100	$943
	Destination Sign (4)	Yes	D1-1	2D-34	Guide	Variable	$120	$190	$100	$1,886

$12,742

$104,305
<table>
<thead>
<tr>
<th>Design</th>
<th>Sign</th>
<th>Standard?</th>
<th>Sign No.</th>
<th>Section</th>
<th>Type</th>
<th>Dimensions (in)</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jughandle 2</td>
<td>Destination Sign (6)</td>
<td>Yes</td>
<td>D1-1</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>All Turns (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>72x18</td>
<td>$110</td>
</tr>
<tr>
<td></td>
<td>All Turns From Right Lane (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>60x36</td>
<td>$180</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All Turns (2)</td>
<td>Yes</td>
<td>R3-1</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$80</td>
</tr>
<tr>
<td></td>
<td>No Left Turn (Symbol) (2)</td>
<td>Yes</td>
<td>R3-2</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Left Lane Must Turn Left (2)</td>
<td>Yes</td>
<td>R3-7</td>
<td>2B.17</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>One Way (2)</td>
<td>Yes</td>
<td>R6-1L</td>
<td>2B.32</td>
<td>Reg</td>
<td>36x12</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Lane Ends Merge Left (2)</td>
<td>Yes</td>
<td>W9-2</td>
<td>2C.28</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Lane Ends Merge Right (2)</td>
<td>Yes</td>
<td>W9-2</td>
<td>2C.28</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Lane Reduction (4)</td>
<td>Yes</td>
<td>W4-2</td>
<td>2C.28</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>No Turns (2)</td>
<td>Yes</td>
<td>R3-3</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Curve (2)</td>
<td>Yes</td>
<td>W1-2R</td>
<td>2C.6</td>
<td>Warning</td>
<td>30x30</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Destination Sign (2)</td>
<td>Yes</td>
<td>D1-1</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Traffic From Right Does Not Stop (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>30x30</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Cardinal Direction Marker (10)</td>
<td>Yes</td>
<td>M3-1 - M3-4</td>
<td>2D.15</td>
<td>Guide</td>
<td>24x12</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Directional Arrow (10)</td>
<td>Yes</td>
<td>M6-1 - M6-3</td>
<td>2D.26</td>
<td>Guide</td>
<td>21x15</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Chevron (4)</td>
<td>Yes</td>
<td>W1-8</td>
<td>2C.10</td>
<td>Warning</td>
<td>18x24</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Diagrammatic Signs for Split (4)</td>
<td>Yes</td>
<td>2E.20</td>
<td>Guide</td>
<td></td>
<td></td>
<td>$1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CFI</td>
<td>No Right Turn (Symbol) (2)</td>
<td>Yes</td>
<td>R3-1</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$80</td>
</tr>
<tr>
<td></td>
<td>No Left Turn (Symbol) (2)</td>
<td>Yes</td>
<td>R3-2</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Left Lane Must Turn Left (2)</td>
<td>Yes</td>
<td>R3-7</td>
<td>2B.17</td>
<td>Reg</td>
<td>30x30</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>One Way (2)</td>
<td>Yes</td>
<td>R6-1L</td>
<td>2B.32</td>
<td>Reg</td>
<td>36x12</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Lane Ends Merge Left (2)</td>
<td>Yes</td>
<td>W9-2</td>
<td>2C.28</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Lane Ends Merge Right (2)</td>
<td>Yes</td>
<td>W9-2</td>
<td>2C.28</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Lane Reduction (4)</td>
<td>Yes</td>
<td>W4-2</td>
<td>2C.28</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>No Turns (2)</td>
<td>Yes</td>
<td>R3-3</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Curve (2)</td>
<td>Yes</td>
<td>W1-2R</td>
<td>2C.6</td>
<td>Warning</td>
<td>30x30</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Destination Sign (2)</td>
<td>Yes</td>
<td>D1-1</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Traffic From Right Does Not Stop (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>30x30</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Cardinal Direction Marker (10)</td>
<td>Yes</td>
<td>M3-1 - M3-4</td>
<td>2D.15</td>
<td>Guide</td>
<td>24x12</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Directional Arrow (10)</td>
<td>Yes</td>
<td>M6-1 - M6-3</td>
<td>2D.26</td>
<td>Guide</td>
<td>21x15</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Chevron (4)</td>
<td>Yes</td>
<td>W1-8</td>
<td>2C.10</td>
<td>Warning</td>
<td>18x24</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Diagrammatic Signs for Split (4)</td>
<td>Yes</td>
<td>2E.20</td>
<td>Guide</td>
<td></td>
<td></td>
<td>$1,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bowtie</td>
<td>No Left Turn (Symbol) (4)</td>
<td>Yes</td>
<td>R3-2</td>
<td>2B.17</td>
<td>Reg</td>
<td>24x24</td>
<td>$80</td>
</tr>
<tr>
<td></td>
<td>YIELD (4)</td>
<td>Yes</td>
<td>R1-2</td>
<td>2B.08</td>
<td>Reg</td>
<td>36x36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>All Turns From Right Lane (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>60x36</td>
<td>$180</td>
</tr>
<tr>
<td></td>
<td>Destination Sign (2)</td>
<td>Yes</td>
<td>D1-2</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Destination Sign (6)</td>
<td>Yes</td>
<td>D1-1</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Yield Ahead (Symbol) (2)</td>
<td>Yes</td>
<td>W3-2a</td>
<td>2C.25</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Circular Intersection (2)</td>
<td>Yes</td>
<td>W2-6</td>
<td>2C.34</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Diagrammatic Sign (2)</td>
<td>Yes</td>
<td>2E.19</td>
<td>Guide</td>
<td></td>
<td></td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>One Way (4)</td>
<td>Yes</td>
<td>R6-1R</td>
<td>2B.32</td>
<td>Reg</td>
<td>36x12</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Destination Sign/Keep Right (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All Turns From Right Lane (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>60x36</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Destination Sign (2)</td>
<td>Yes</td>
<td>D1-2</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Destination Sign (6)</td>
<td>Yes</td>
<td>D1-1</td>
<td>2D-34</td>
<td>Guide</td>
<td>Variable</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Yield Ahead (Symbol) (2)</td>
<td>Yes</td>
<td>W3-2a</td>
<td>2C.25</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Circular Intersection (2)</td>
<td>Yes</td>
<td>W2-6</td>
<td>2C.34</td>
<td>Warning</td>
<td>36x36</td>
<td>$100</td>
</tr>
<tr>
<td></td>
<td>Diagrammatic Sign (2)</td>
<td>Yes</td>
<td>2E.19</td>
<td>Guide</td>
<td></td>
<td></td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>One Way (4)</td>
<td>Yes</td>
<td>R6-1R</td>
<td>2B.32</td>
<td>Reg</td>
<td>36x12</td>
<td>$120</td>
</tr>
<tr>
<td></td>
<td>Destination Sign/Keep Right (2)</td>
<td>No</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>Variable</td>
<td>$120</td>
</tr>
</tbody>
</table>

Total includes 15% mobilization cost and quantity of signs
APPENDIX C

DETAILED EXPECTANCY CHECKLISTS
Figure C.1 Blank Expectancy Checklist (Alexander and Lunenfeld)
11. Signals: Are Any Signals, Signal Configurations, and/or Signal Patterns Confusing or Unusual?
 Where: ___________________ What: ___________________

12. Markings: Are Any Markings (Delineation) Confusing or Unexpected?
 Where: ___________________ What: ___________________

13. Warning & Regulatory Signs: Are Any Warning and/or Regulatory Signs Surprising, Confusing, Obsolete and/or Nonstandard?
 Where: ___________________ What: ___________________

14. Navigation: Are Any Guide Signs, Directional Signs, and/or Route Markers Surprising, Confusing, Obsolete and/or Nonstandard?
 Where: ___________________ What: ___________________

15. Missing Information: Is Any Needed Information Missing?
 Where: ___________________ What: ___________________

16. Others: Is There Anything else About the Site or Location Surprising or Confusing?
 Where: ___________________ What: ___________________
DETAILED EXPECTANCY CHECKLIST

Reviewer: Hummer______________________ Date: 7/17/01___________

Location: Median U-Turn – Michigan_______________________________

1. Upstream Land Use: Retail________________ Have Changes Occurred? No________
 Where:________________________ What:________________________

2. Upstream Road Type: Arterial________________ Have Changes Occurred? No________
 Where:________________________ What:________________________

3. Upstream Road Surface: OK________________ Have Changes Occurred? No________
 Where:________________________ What:________________________

4. Upstream Cross-Section: 4-6 lane, 50’-60’ median Have Changes Occurred? No________
 Where:________________________ What:________________________

5. Terrain: Do Terrain Features or Manmade Elements Provide False Cues? No________
 Where:________________________ What:________________________

6. Geometry: Does Geometry or Geometric Inconsistencies Surprise Drivers? No________
 Where:________________________ What:________________________

7. Sight Distances: Does Poor Sight Distance Cause Drivers to Miss Unexpected Features? No________
 Where:________________________ What:________________________

8. Weather: Are Temporary Weather Features Involved? No________
 Where:________________________ What:________________________

9. Lighting: Does Lighting (Including Natural Light) Contribute to Expectancy Violations? No________
 Where:________________________ What:________________________

10. Traffic: Do Any Unusual Traffic Patterns or Mixes Exist (Including Pedestrians)? Yes________
 Where: At crossovers and between crossover and main intersection
 What: Rerouting left turns to crossovers, weaving

11. Signals: Are Any Signals, Signal Configurations, and/or Signal Patterns Confusing or Unusual? No, simpler________
 Where:________________________ What:________________________

12. Markings: Are Any Markings (Delineation) Confusing or Unexpected? No________
 Where:________________________ What:________________________

Figure C.2 Median U-Turn Checklist
13. Warning & Regulatory Signs: Are Any Warning and/or Regulatory Signs Surprising, Confusing, Obsolete and/or Nonstandard? Yes, surprising
Where: At intersection What: No left turn

14. Navigation: Are Any Guide Signs, Directional Signs, and/or Route Markers Surprising, Confusing, Obsolete and/or Nonstandard? Yes, Nonstandard
Where: On approach What: Diagrammatic sign

15. Missing Information: Is Any Needed Information Missing? No
Where: What:

16. Others: Is There Anything else About the Site or Location Surprising or Confusing? No
Where: What:
DETAILED EXPECTANCY CHECKLIST

Reviewer: Thompson ______________________ **Date:** 7/16/01 _______

Location: Superstreet – US 301 & Galena Rd., Kent County, MD

1. **Upstream Land Use:** Commercial (open) **Have Changes Occurred?** No
 Where: __________________________ **What:** __________________________

2. **Upstream Road Type:** Divided Highway **Have Changes Occurred?** No
 Where: __________________________ **What:** __________________________

3. **Upstream Road Surface:** OK **Have Changes Occurred?** No
 Where: __________________________ **What:** __________________________

4. **Upstream Cross-Section:** 4 lane, 50’-60’ median **Have Changes Occurred?** No
 Where: __________________________ **What:** __________________________

5. **Terrain:** Do Terrain Features or Manmade Elements Provide False Cues? No
 Where: __________________________ **What:** __________________________

6. **Geometry:** Does Geometry or Geometric Inconsistencies Surprise Drivers? No
 Where: __________________________ **What:** __________________________

7. **Sight Distances:** Does Poor Sight Distance Cause Drivers to Miss Unexpected Features? No
 Where: __________________________ **What:** __________________________

8. **Weather:** Are Temporary Weather Features Involved? No
 Where: __________________________ **What:** __________________________

9. **Lighting:** Does Lighting (Including Natural Light) Contribute to Expectancy Violations? No
 Where: __________________________ **What:** __________________________

10. **Traffic:** Do Any Unusual Traffic Patterns or Mixes Exist (Including Pedestrians)? Yes
 Where: At intersection **What:** No through or left turn movements allowed from Minor Street

11. **Signals:** Are Any Signals, Signal Configurations, and/or Signal Patterns Confusing or Unusual? No
 Where: __________________________ **What:** __________________________

12. **Markings:** Are Any Markings (Delineation) Confusing or Unexpected? No
 Where: __________________________ **What:** __________________________

Figure C.3 Superstreet Checklist
13. Warning & Regulatory Signs: Are Any Warning and/or Regulatory Signs Surprising, Confusing, Obsolete and/or Nonstandard? Yes, surprising____
Where: At intersection_____________ What: No left turn__________

14. Navigation: Are Any Guide Signs, Directional Signs, and/or Route Markers Surprising, Confusing, Obsolete and/or Nonstandard? Yes, Nonstandard______
Where: On minor street approach_________ What: Right turn only, Right only at 301__________

15. Missing Information: Is Any Needed Information Missing? Yes____________
Where: On minor street approach_______ What: Diagrammatic sign displaying how to complete through or left movement_________________________

16. Others: Is There Anything else About the Site or Location Surprising or Confusing? No____
Where:_________________________________ What:_________________________
DETAILED EXPECTANCY CHECKLIST

Reviewer: Thompson ___________________________ Date: 7/16/01

Location: Jughandle – New Jersey

1. Upstream Land Use: Commercial __________ Have Changes Occurred? _No________ Where: __________________________ What: ______________

2. Upstream Road Type: Arterial __________ Have Changes Occurred? _No________ Where: __________________________ What: ______________

3. Upstream Road Surface: OK __________ Have Changes Occurred? _No________ Where: __________________________ What: ______________

4. Upstream Cross-Section: 6 lane, Jersey Barrier median Have Changes Occurred? _No________ Where: __________________________ What: ______________

5. Terrain: Do Terrain Features or Manmade Elements Provide False Cues? _No________ Where: __________________________ What: ______________

7. Sight Distances: Does Poor Sight Distance Cause Drivers to Miss Unexpected Features? _No________ Where: __________________________ What: ______________

10. Traffic: Do Any Unusual Traffic Patterns or Mixes Exist (Including Pedestrians)? _Yes________ Where: At intersection _________ What: No through or left turn movements allowed from Minor Street

11. Signals: Are Any Signals, Signal Configurations, and/or Signal Patterns Confusing or Unusual? _No________ Where: __________________________ What: ______________

12. Markings: Are Any Markings (Delineation) Confusing or Unexpected? _No________ Where: __________________________ What: ______________

Figure C.4 Jughandle Checklist
13. Warning & Regulatory Signs: Are Any Warning and/or Regulatory Signs Surprising, Confusing, Obsolete and/or Nonstandard? Yes, surprising_____
 Where:________ At intersection ___________ What: No left turn ___________

14. Navigation: Are Any Guide Signs, Directional Signs, and/or Route Markers Surprising, Confusing, Obsolete and/or Nonstandard? Yes, Nonstandard _______
 Where: On minor street approach _______ What: Right turn only, Right only at 301________

15. Missing Information: Is Any Needed Information Missing? Yes __________
 Where: On minor street approach _______ What: Diagrammatic sign displaying how to complete through or left movement

16. Others: Is There Anything else About the Site or Location Surprising or Confusing? No____
 Where: _______________________________ What: ___________________________
DETAILED EXPECTANCY CHECKLIST

Reviewer: Thompson __________________________ Date: 7/16/01

Location: Continuous Flow Intersection – MD 210 & MD 228, Prince Georges Co., MD

1. Upstream Land Use: Residential __________ Have Changes Occurred? Yes _______
 Where: Downstream __________ What: Commercial __________

2. Upstream Road Type: Divided Highway ______ Have Changes Occurred? No _______
 Where: _______________ ______ What: ____________________

3. Upstream Road Surface: OK ________________ Have Changes Occurred? No _______
 Where: ___________________ ______ What: __________________

4. Upstream Cross-Section: 4 lane, 40’-50’ median Have Changes Occurred? No _______
 Where: ___________________ ______ What: __________________

5. Terrain: Do Terrain Features or Manmade Elements Provide False Cues? No _______
 Where: _________________________ ______ What: __________________

6. Geometry: Does Geometry or Geometric Inconsistencies Surprise Drivers? No _______
 Where: _______________________ ______ What: __________________

7. Sight Distances: Does Poor Sight Distance Cause Drivers to Miss Unexpected Features? No _______
 Where: _________________________ ______ What: __________________

8. Weather: Are Temporary Weather Features Involved? No __________
 Where: _________________________ ______ What: __________________

 Where: _________________________ ______ What: __________________

10. Traffic: Do Any Unusual Traffic Patterns or Mixes Exist (Including Pedestrians)? Yes _______
 Where: Prior to intersection _______ What: Minor street – the way the movements split

11. Signals: Are Any Signals, Signal Configurations, and/or Signal Patterns Confusing or Unusual? No _______
 Where: _________________________ ______ What: __________________

12. Markings: Are Any Markings (Delineation) Confusing or Unexpected? No _______
 Where: _________________________ ______ What: __________________

Figure C.5 Continuous Flow Intersection Checklist
13. Warning & Regulatory Signs: Are Any Warning and/or Regulatory Signs Surprising, Confusing, Obsolete and/or Nonstandard? Yes, nonstandard
Where: At intersection What: Traffic From Right Does Not Stop

14. Navigation: Are Any Guide Signs, Directional Signs, and/or Route Markers Surprising, Confusing, Obsolete and/or Nonstandard? No
Where: What:

15. Missing Information: Is Any Needed Information Missing? No
Where: What:

16. Others: Is There Anything else About the Site or Location Surprising or Confusing? No
Where: What:
DETAILED EXPECTANCY CHECKLIST

Reviewer: Thompson ________________________ Date: 7/16/01 ______________

Location: Bowtie (Based on Signing Plan) __________________________________

1. Upstream Land Use: Commercial Have Changes Occurred? No
 Where: ____________________________ What: ________________________________

2. Upstream Road Type: Undivided Highway Have Changes Occurred? No
 Where: ____________________________ What: ________________________________

3. Upstream Road Surface: OK Have Changes Occurred? No
 Where: ____________________________ What: ________________________________

4. Upstream Cross-Section: 4 lane Have Changes Occurred? No
 Where: ____________________________ What: ________________________________

5. Terrain: Do Terrain Features or Manmade Elements Provide False Cues? No
 Where: ____________________________ What: ________________________________

6. Geometry: Does Geometry or Geometric Inconsistencies Surprise Drivers? No
 Where: ____________________________ What: ________________________________

7. Sight Distances: Does Poor Sight Distance Cause Drivers to Miss Unexpected Features? No
 Where: ____________________________ What: ________________________________

8. Weather: Are Temporary Weather Features Involved? No
 Where: ____________________________ What: ________________________________

9. Lighting: Does Lighting (Including Natural Light) Contribute to Expectancy Violations? No
 Where: ____________________________ What: ________________________________

10. Traffic: Do Any Unusual Traffic Patterns or Mixes Exist (Including Pedestrians)? Yes
 Where: At intersection ____________________________ What: No left turns, must use roundabout to on minor street to make left turns

11. Signals: Are Any Signals, Signal Configurations, and/or Signal Patterns Confusing or Unusual? No
 Where: ____________________________ What: ________________________________

12. Markings: Are Any Markings (Delineation) Confusing or Unexpected? No
 Where: ____________________________ What: ________________________________

Figure C.6 Bowtie Checklist
13. Warning & Regulatory Signs: Are Any Warning and/or Regulatory Signs Surprising, Confusing, Obsolete and/or Nonstandard? Yes, nonstandard
Where: Prior to intersection What: All Turns from Right Lane, Left Turns Keep Straight

14. Navigation: Are Any Guide Signs, Directional Signs, and/or Route Markers Surprising, Confusing, Obsolete and/or Nonstandard? Yes
Where: Approaching the Intersection What: Diagrammatic Sign

15. Missing Information: Is Any Needed Information Missing? No
Where: What:

16. Others: Is There Anything else About the Site or Location Surprising or Confusing? No
Where: What:
APPENDIX D

PUBLIC INFORMATION BROCHURES
3RD STREET
WESTBOUND AT JACKSON STREET
EASTBOUND AT WASHINGTON STREET

The new "protected/permisive" signal operation to be installed at the intersections of 3rd Street with Jackson and Washington Streets will consist of a basic six step (phase) signal sequence for traffic in the left lane of 3rd Street (westbound to southbound at Jackson and eastbound to northbound at Washington) as indicated below. Although the signal operation will be the same as at 6th and Jackson and 6th and Washington, the allowable traffic movements are somewhat different because of the difference in the lane configurations. Note the additional sign that will be used at these locations.

Left lane signal display with signs.

Signal Operation Sequence

1. Red light. All traffic in this lane must stop. Cross street traffic is proceeding.

2. Green arrow with green ball. Traffic in the left lane may either turn left or continue straight across the intersection. The green arrow indicates that the left turn is "protected," that is, both the oncoming traffic and cross street traffic are stopped.

3. Yellow arrow with green ball. The yellow arrow indicates that the "protected" left turn is terminating, and oncoming traffic is about to receive a green light. Traffic in the left lane may continue to go straight across the intersection, but left-turners must now prepare to yield to oncoming traffic.

4. Green ball. Oncoming traffic now has a green light. Traffic in this lane may continue to go straight across the intersection. However, as indicated by the sign, traffic in this lane must now yield to oncoming traffic before turning left.

5. Yellow ball. Prepare to stop. The light is about to change to red. Cross street traffic is about to start proceeding.

6. Red light. All traffic in this lane must stop. Cross street traffic is proceeding.

Figure D.1 Protective/Permissive Signal Brochure (Pline)
Other Traffic Information
Brochures Available
- Speed Zones & Speed Bumps
- Stop Signs & Traffic Signals
- Merited Crosswalks
- Pedestrian Signals
- Traffic Signal Systems
- Adult School Crossing Guards
- Flashing Beacons
- Parking Permits
- Avoiding Parking Tickets
- Traffic Safety Tips

If you have questions, requests or suggestions concerning traffic, please call the
Engineering Division at 654-7987.

Printed on recycled paper

Left Turn
Traffic Signals

Until recently, drivers have been accustomed to seeing left turn signals where there is initially a green arrow followed by an amber arrow followed by a red arrow. On the green arrow drivers are given the right of way to complete left turns free of any other traffic conflicts. The amber arrow warns drivers that the left turn signal is ending. On the red arrow, left turners are not permitted. These types of signals have helped to regulate traffic but there is no opposing traffic they can cause unnecessary delays.

Protective/Permissive
Left Turn Signals

Over the last several years, a different type of left turn signal has been implemented at intersections in the city. Under this new arrangement, left turn signals provide the usual green arrow which is usually followed by the normal amber arrow. After the amber arrow has terminated, drivers are now faced with a solid green ball signal.

During the display of the solid green ball, left turns can be made when there are adequate gaps in opposing traffic to complete left turn safely. This new type of left turn phasing is designed to help minimize delay by eliminating the need for the red arrow and allowing vehicles to turn on the green ball after opposing traffic has cleared. By not having the red arrow, motorists do not have to stop and wait to turn left even when there is no opposing traffic, a situation that often occurs during periods of low traffic volumes. The signal still provides a green left turn arrow during rush hours when traffic is heavy, but during off peak hours, left turning vehicles are not delayed by a red arrow.

Why Doesn't the City Use
Protected/Permissive Left
Turn Signals Everywhere?

The City is currently considering protected/permisive left turn signals where drivers can turn left only when there are gaps in approaching traffic and where traffic can safely be accommodated. Scenarios of recent protected/permisive installations are at the intersections of Victoria/Loomis, Telegraph/Pence, Telegraph/Yoshida, and Telegraph/Albatross where only one lane is available at all intersections. Based on the study, protected/permisive left turn installations are made when traffic volumes are at a minimum to minimize any adverse effects on traffic flow. Some of these locations include Victoria/Telegraph, Telegraph/Pence, Telegraph/Yoshida, and Telegraph/Albatross where only one lane is available at all intersections. Based on the study, protected/permisive left turn installations are made when traffic volumes are at a minimum to minimize any adverse effects on traffic flow. Some of these locations include Victoria/Telegraph, Telegraph/Pence, Telegraph/Yoshida, and Telegraph/Albatross where only one lane is available at all intersections.
Figure D.3 Left-Turn Phasing Warrants Brochure (Page)

LEFT-TURN PHASING WARRANTS

NEW YORK CITY

Nationally accepted warrants do not exist to assist traffic engineers in the use of the proposed/permissive left-turn phasing evaluation. For this reason the Bureau of Traffic (NYCDOT) has developed its own warrants. The warrants used for approving a left-turn phasing at signalized intersections are based on accident experience and left-turn capacity.

The following two warrants are utilized by the Bureau before recommending the implementation of a Left-Turn phase:

WARRANT 1 (Accident Frequency) This Warrant is satisfied when a minimum of 2 reported left-turn accidents occur in a 12 month period. If accidents can not be obtained for the latest 12 month period, then accident information for previous periods may be used for the analysis.

WARRANT 2 (Left-Turn Capacity) The warrant is satisfied when for six or more directions the left-turn flow rate exceeds the left-turn capacity. The left-turn capacity is the maximum flow rate that may be assigned to the designated phase.

The warrant allows the engineer to analyze approaches with exclusive left-turn bays and approaches with shared left-turn and through vehicles.

The Bureau of Traffic requires the completion of the 3 page "Left-Turn Phasing" warrant study. The study includes the Left-turn phase (provisions, signal phasing, timing, turning movements, etc.) and the Warrant 1/Warrant 2 calculation pages.

Copies of the study may be obtained by notifying the Bureau of Traffic Operations.

The following definitions are used with the left-turn phasing analysis:

ITE TRAFFIC INFORMATION PROGRAM SERIES - Revised 5/2009
APPENDIX E

TEXAS VITAL SIGNS CAMPAIGN SIGN
Figure E.1. Texas Vital Signs Campaign Sign (Hawkins, Lancaster, Fette, et al.)
APPENDIX F

NCDOT PUBLIC INFORMATION BROCHURES
MEDIA ALERT

NCDOT REOPENS INTERSTATE 95 SOUTH AND U.S. 421 IN HARNETT COUNTY

RALEIGH—The N.C. Department of Transportation (NCDOT) has reopened Interstate 95 South at Exit 73 in Harnett County. Also, U.S. 421 at I-95 has reopened.

The outside lane of I-95 South and one lane in each direction on U.S. 421 were closed Sunday, February 26, for bridge repairs, and the closings were anticipated to last for two weeks. Due to good weather and crews working around the clock, NCDOT was able to complete the project ahead of schedule.

For more information on this project, contact the bridge maintenance engineer in Fayetteville at (910) 829-6345.

NCDOT

For other transportation questions, call the department’s Customer Service Office toll free at 1-877-DOT-4YOU.

For information about major construction projects across the state, visit the NCDOT Construction Information SafeDrive Guide website at www.doh.dot.state.nc.us/impact/SafeDrive.
YOU ARE INVITED to attend a community meeting.

The North Carolina Department of Transportation (NCDOT) will hold a community meeting to discuss an upcoming maintenance project to improve the Wake Forest Road bridge crossing over Capital Boulevard in Raleigh.

DATE: Thursday, March 18, 1999
TIME: 4 p.m. - 7 p.m.
LOCATION: Salvation Army Community Center, 902 Wake Forest Road - Raleigh, N.C. 27604

NCDOT personnel will be present to give a complete overview of the project, present the construction timeline, describe detours and discuss public information efforts. Business owners, residents and others interested in discussing the project are invited to attend the meeting.

For further information, please contact Carl Goode, NCDOT Citizens Participation Unit at (919) 250-4092.

Figure F.2 Community Meeting Flyer (NCDOT)
NCDOT is widening U.S. 29 and adding **REVERSIBLE lanes** near Lowe's Motor Speedway.

The N.C. Department of Transportation (NCDOT) is widening three miles of U.S. 29 to six lanes from Pavilion Boulevard to the Rocky River in Cabarrus County. Morehead Road will be widened to four lanes from U.S. 29 to south of Hudspeth Road.

The department is adding a reversible lane system to accommodate commuter traffic and heavy event traffic at Lowe's Motor Speedway. Overhead directional arrows will be added to allow traffic flow to reverse as needed.

Construction is scheduled to be complete by summer 2001.

During construction, motorists can expect:

- Traffic to remain in its existing pattern throughout most of construction.
- All lanes will remain open on the following roads from 6:30 a.m. until 9 a.m. and from 4 p.m. until 6 p.m., Monday through Friday and during holidays and special events:
 - U.S. 29
 - Pavilion Boulevard
 - Speedway Boulevard and
 - Morehead Road.

There will be an abundance of construction workers and equipment in this busy work zone.

MOTORISTS AND TRUCKERS SHOULD DRIVE THE POSTED SPEED LIMIT.

For more information on this project, contact the resident engineer in Harrisburg at (704) 455-2958.
Merritt Drive at I-40 Bridge Replacement

A Meeting to inform the community.

Who:
Greensboro City Police and the North Carolina Department of Transportation.

What:
Community Meeting to discuss the Merritt Drive Bridge replacement.

When:
September 10, 1998
7 p.m. to 9 p.m.

Where:
Smith High School Auditorium.

For more information on I-40 construction and the Merritt Drive bridge replacement, contact the resident engineer in Greensboro at 336-334-3228.

NCDOT Hotline

For other transportation questions, call the department’s Customer Service Office toll free telephone number at 1-877-DOT-4YOU.
U.S. 17

is now four lanes in
Chowan and Perquimans counties

The North Carolina Department of Transportation has widened U.S. 17 to four lanes divided by a median from the Edenton Bypass to the Hertford Bypass at U.S. 17 Business south of Hertford.

Four lanes will be open (2 lanes in each direction) on May 15, weather permitting.

Motorists are urged to look both ways and use caution when entering traffic.

WORK ZONE SAFETY TIPS

- STAY ALERT while driving through the work zone.
- Watch for new traffic patterns.
- Obey the speed limit and allow extra time for travel.

For more information on U.S. 17 construction, contact the resident engineer in Ahoskie at (252) 332-4514.

Recycling is part of NCDOT Construction.
For more information, contact the resident engineer.

North Carolina Department of Transportation
IMPACT Public Information Program

R:2208a 200 copies of this flyer were printed at a cost of 3 cents each. 5/98

Figure F.5 Road Widening Information Flyer (NCDOT)
Attention Residents and Businesses

along the U.S. 311 Work Zone:

NCDOT asks your cooperation as
U.S. 311 Widening Continues In Randolph County

The North Carolina Department of Transportation (NCDOT) is continuing to widen U.S. 311 to five lanes with a center turn lane. Construction began in June 1997 and is scheduled for completion in summer 1999.

The department's top priority is safety for motorists and highway workers -- both on and off the highways. That's why beginning in June, NCDOT will place concrete barrier on eastbound U.S. 311 from Tom Hill Road to Trotter Road. Upon completion of eastbound U.S. 311 work, concrete barrier will be placed on westbound U.S. 311 from Trotter Road to Tom Hill Road.

While the concrete barrier is in place, please use the temporary gravel roadway from your driveway to access U.S. 311, which will be limited to the Sults Road Intersection.

Work Zone Tips

- Please drive with caution on the temporary roadway.
- Watch for signs with construction and roadway access information.
- STAY ALERT and allow extra travel time when driving through the work zone.

For more information on U.S. 311 construction, contact the resident engineer in Greensboro at (336) 334-3297.

Recycling is part of NCDOT construction. For more information call the resident engineer.
NORTH CAROLINA DEPARTMENT OF TRANSPORTATION IMPACT PUBLIC INFORMATION PROGRAM

75 copies of this flyer were reproduced at a cost of 3 cents each. 6/98

Figure F.6 Resident and Business Information Flyer (NCDOT)
Construction Information Meeting on I-95 & U.S. 301, N.C. 211 and N.C. 72/711 Interchanges

Tuesday, Oct. 7
7 p.m. - 9 p.m.
Carroll Middle School Cafeteria
On the access road east of I-95 between the U.S. 301 and N.C. 211 Interchange in Lumberton

The North Carolina Department of Transportation (NCDOT) will hold a construction information meeting to discuss the improvements to Interstate 95 and interchanges at U.S. 301, N.C. 211 and N.C. 72/711 in Lumberton.

NCDOT representatives will give a short presentation followed by a question and answer session.

Interested citizens and representatives from area businesses are encouraged to attend.

For more information about the meeting or I-95 improvements, contact the resident engineer in Lumberton at (910) 739-2712.